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ABSTRACT

This paper addresses the problem of comparing abilities of players from
different eras in professional sports. We study National Hockey League play-
ers, professional golfers, and Major League Baseball players from the per-
spectives of home run hitting and hitting for average. Within each sport
the careers of the players overlap to some extent. This network of overlaps,
or bridges, is used to compare players whose careers took place in different
eras. The goal is not to judge players relative to their contemporaries, but
rather to compare all players directly. Hence, the model used in the paper
is a statistical time machine.

We use additive models to estimate the innate ability of players, the ef-
fects of aging on performance, and the relative difficulty of each year within
a sport. We measure each of these effects separated from the others. Hi-
erarchical models are used to model the distribution of players. We spec-
ify separate distributions for each decade, thus allowing the “talent pool”
within each sport to change. We study the changing talent pool in each
sport and address Gould’s conjecture about the way in which populations
change. Nonparametric aging functions are used to estimate the league wide
average aging function. Hierarchical random curves allow for individuals to
age differently from the average of athletes in that sport. We characterize
players by their career profile, rather than a one number summary of their
career.
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1. INTRODUCTION

This paper compares the performances of athletes from different eras in three sports:
baseball, hockey, and golf. A goal is to construct a statistical time machine in which we
estimate how an athlete from one era would perform in another era. For examples, we
estimate how many home runs Babe Ruth would hit in modern baseball, how many points
Wayne Gretzky would have scored in the tight checking National Hockey League (NHL)
of the 1950’s, and how well Ben Hogan would do with the titanium drivers and extra-long
balls of today’s game.

Comparing players from different eras has long been pub fodder. The topic has been
debated endlessly, generally to the conclusion that such comparisons are impossible. How-
ever, the data available in sports are well suited for such comparisons. In every sport
there is a great deal of overlap in players’ careers. While a player that played in the
early 1900’s never played against contemporary players—they did play against players,
who played against players,..., who played against contemporary players. This process
forms a bridge from the early years of sport to the present day that allows comparisons
across eras.

A complication in making this bridge is that the overlapping of players’ careers is
confounded with the players’ aging process; players in all sports tend to improve, peak,
and then decline. To bridge the past to the present the effects of aging on performance
must be modeled. We use a nonparametric function to model these effects in each sport.
An additional difficulty with modeling the effects of age on performance is that age does
not have the same effect on all players. To handle such heterogeneity, we use random
effects for each player’s aging function. This allows for modeling players that deviate
from the “standard” aging pattern. A desirable effect of using random curves is that
each player is characterized by a career profile, rather than by a one-number summary.
Player A may be better than Player B when they are both 23 years old and Player A may
be worse than Player B when they are 33 years old. Section 3.4 discusses the age effect
model.

By modeling the effects of age on the performance of each individual we can simultane-
ously model the difficulty of each year and the ability of each player. We use hierarchical
models (see Draper, et al (1992)) to estimate the innate ability of each player. To capture
the changing pool of players in each sport we use separate distributions for each decade.
This allows us to study the changing distribution of players in each sport, over time. We

also model the effect that year (season) has on the performance of players. We find that,



for example, in the last 40 years, the improved equipment and the conditions of the courses
in golf have decreased scoring by approximately one shot per 18 holes. This is above and
beyond any improvement in the abilities of the players over time. The estimated innate
ability of each player, and the changing evolution of each sport is discussed in Section 7.

In his book, Full House, Steven Jay Gould hypothesized that the population of players
in sport is continually improving. He claims there is a limit to human ability—a wall which
will never be crossed. There will always be players close to this wall, but as time goes on
and the population increases, more and more players will be close to this wall. He believes
there are great players in all eras, but the mean players and lower end of the tail players
in each era are closer to the “wall.” By separating out the innate ability of each player
we study the dynamic nature of the population of players. Section 8 describes our results
about the population dynamics. We provide a discussion of Gould’s claims as well.

We have four main goals:

1) To describe the effects of aging on performance in each of the sports, including the
degree of heterogeneity among players. Looking at the unadjusted performance of players
over their career is confounded with the changing nature of the players and the changing
structure of the game. We separate out these factors to address the aging effects.

2) To describe the effects of playing in each year in each of the sports. We want to
separate out the difficulty of playing in each era from the quality of players in that era.
These effects may be due to rule changes, changes in the quality of the opponents, changes
in the available (and legal) equipment, and the very nature of the sport.

3) To characterize the talent of each player, independent of the era or age of the player.

4) To characterize the changing structure of the population of players. In a sport in
which there is one player playing against an objective measure with the same equipment
that has always been used (e.g. throwing a shot put, lifting weights), it is clear that the
quality of players is increasing. We want to know if that is true in these three professional
sports.

Addressing any factor that affects performance requires addressing all such factors. If
the league-wide performance is used as a measure of the difficulty of a particular year,
this is confounded with the ability of the players in that year. In hockey if there are an
average of 3 goals scored per game in 1950 and 4 goals scored per game in 1990-it is not
clear whether scoring is easier or if the offensive players are more talented. Our aim is to
separate out each effect, but doing so while accounting for the other effects.

We have found little research in this area. Riccio (1994) examined the aging pattern



of Tom Watson in his U.S. Open performances. Berry and Larkey (1998) compare the
performance of golfers in major tournaments. Albert (1998) looks at the distribution of
home runs by Mike Schmidt over his career. Schell (1998) ranks the greatest baseball
players of all time on their ability to hit for average. He uses a z-score method to account
for the changing distribution of players and estimates the ballpark effects. He ignores the
aging effects by requiring a minimum number of at bats to qualify for his method. Both
of these effects are estimated separately without accounting for the other changing effects.
Our goal is to construct a comprehensive model that makes the necessary adjustments
simultaneously, rather than a series of clever adjustments.

The next section examines the measures of performance in each sport and the avail-
able data for each. Section 3 describes the models used and the key assumptions of each.
Section 4 discusses the Markov chain Monte Carlo (MCMC) algorithms used. The algo-
rithms are standard MCMC successive substitution algorithms. Section 5 looks at the
goodness-of-fit for each of the models. To address the aging effects we present nonpara-
metric aging functions in Section 6. We use random curves to allow for variation in aging
across individuals. In Section 7 we discuss the results for each sport; including player
aging profiles, top peak performers, and the changes over time for each sport. The popu-
lation dynamics within each sport are discussed in Section 8. A discussion of the results

and possible extensions are presented in Section 9.

2. SPORTS SPECIFICS AND AVAILABLE DATA

In our study of hockey we model the ability of NHL players to score points. Hockey is
a game, much like soccer, where two teams battle continuously to shoot the puck into
the other team’s goal. Whoever shoots the puck in the goal receives credit for scoring a
goal. If the puck was passed from teammates to the goal scorer, then up to the last two
players to pass the puck on the play receive credit for an assist. A player receives credit
for a point for either a goal or an assist. In hockey there are three categories of players:
forwards, defensemen, and goalies. A main task of defensemen and goalies is to prevent
the other team from scoring. A main task of forwards is to score goals. Therefore, we
consider forwards only. We recorded the number of points in each season for the 1,136
forwards playing at least 100 games between 1948 and 1996. All hockey data are from
Hollander (1997). We deleted all seasons played for players aged 40 and over. There were
very few such seasons and thus the age function was not well defined greater than 40.

Any conclusions in this paper about these players is strictly based on their ability to score



points, which is not necessarily their “value” to a hockey team. Some forwards are well
known for their defensive abilities, thus their worth is not well measured by their point
totals.

Hockey is considered among the most physically demanding of sports. It is a sport
that requires great physical endurance, strength, and coordination. As evidence of this,
forwards rotate throughout the game, with 3 or 4 lines (sets of three forwards) playing in
alternating shifts. In no other major sport do players participate such a small fraction of
the time. We do not have data on which players were linemates. The NHL has undergone
significant changes over the years. The league has expanded from 6 teams in 1948 to
30 teams in 1996. In recent years there has been a dramatic increase in the numbers of
Eastern European and American players, as opposed to almost exclusively Canadians in
the early years. Technological developments have made an impact in the NHL. The skates
that players use today are vastly superior to those of 25 years ago. The sticks are stronger
and curved, helping players control the puck better and shoot more accurately. The style
of play has also changed. At different times in NHL history coaches have stressed offense
or stressed defense.

Golf is considered a game where it takes a long time for a player to reach his peak.
It takes a great deal of talent to play golf, but the game does not take the physical toll
that hockey does. It seems reasonable to expect that the skills needed to play golf do
not deteriorate as quickly in aging players as do speed and strength in hockey. Therefore,
the playing careers of golfers are much longer. Technology is believed to have played
an enormous role in golf. Advances in club and ball design have aided modern players.
The conditions of courses today are far superior to conditions 50 years ago. Modern
professional golfers experience very few bad lies of the ball on the fairways of today’s
courses. The speed of the greens has increased over the years, which may increase scores,
but this may be offset by the “truer” roll. The common perception is that technology has
made the game easier.

We model the scoring ability of professional golfers in the four major tournaments.
Most pros consider these the most important events during each golf season. We have
individual round scores for every player in the Masters and United States Open from
1935 to 1997 and in the Open Championship (labeled the British Open by Americans)
and the PGA of America Championship from 1961 to 1997. (The Masters and US Open
were not played from 1943 to 1945 due to WWIL.) A major tournament consists of four

rounds each of 18 holes of play. There is a cut that occurs between the second and



third rounds, and thus playing in a major generally consists of playing either 2 or 4
rounds. We found the birth years for 488 players who played at least 10 majors in the
tournaments we are considering. We did not find the ages of 38 players who played at
least 10 majors. The birth years for current players were found at various web sites
(pgatour.com, www.golfweb.com). For older players we consulted golf writer Marino
Parascenzo. We had trouble finding the birth year for marginal players from past eras.
This bias has consequences in our analysis of the population dynamics in Section 8.

Baseball is rich in data. We have data on every player (non-pitcher) who has batted
in Major League Baseball (MLB) in the modern era (1901-1996). We have the year of
birth and the home ballpark for each player during each season. The number of at bats,
hits, and home runs are recorded for each season. An at bat in baseball is one in which
the player reaches base safely due to hitting the ball or was put out. An at bat does
not include walks, sacrifice hits, or being hit by a pitch (interestingly, sacrifice flies were
considered at bats before 1950 but not thereafter). A player’s batting average is the
proportion of at bats a player gets a hit. We also model a players’ home run average,
which is the proportion of at bats a player hits a home run.

In terms of aging, baseball is apparently between golf and hockey. Hand-eye coordina-
tion is crucial, but there is not an onerous physical toll on players. A common perception
is that the careers of baseball players are longer than hockey, but shorter than golf. Base-
ball prides itself on being a traditional game and there have been relatively few changes
in the rules during the twentieth century, considered the “modern era” of baseball. Some
changes include lowering the mound, reducing the size of the strike zone, and modifications
to the ball. The first 20 years of this century were labeled the “dead-ball era.” The most
obvious change in the population of players was in the forties when African-Americans
were first allowed to play in the major leagues. MLB has historically been played mainly
by U.S. athletes, although Latin Americans have had an increasing influence over the last

40 years.

3. MODELS

In this section we present the bridging model. The details of the model for each sport are
presented in the subsections that follow. In order to compare players from different eras
we select the most recent season in the data set as the benchmark season. All evaluations
of players are relative to the benchmark season. The ability of every player that played

during the benchmark season can be estimated by their performance in that season. In



the home run example this includes current sluggers like Mark McGwire (1987-present),
Ken Griffey Jr. (1989-present), and Mike Piazza (1992-present). The ability of players
whose careers overlapped with the current players can be estimated by comparing their
performances, in common years, to the current players’ performances. In the home run
example this includes comparing players like Reggie Jackson (1967-1987), Mike Schmidt
(1972-1989), and Dale Murphy (1976-1992) to McGwire, Griffey, and Piazza. The careers
of Jackson, Schmidt, and Murphy overlapped with the careers of players who preceded
them, such as Mickey Mantle (1951-1968), Harmon Killebrew (1954-1975), and Hank
Aaron (1954-1976). The abilities of Mantle, Killebrew, and Aaron can be estimated from
their performances relative to Jackson, Schmidt, and Murphy, in their common years. The
network of thousands of players, with staggered careers, extends back to the beginning of
baseball. All the sports considered in this paper have similar networks.

We estimate a league wide age effect by comparing each player’s performance as they
age with their estimated ability. The difficulty of a particular season can be estimated
by comparing each player’s performance in the season with their estimated ability and
estimated age effect during that season. We can estimate other effects, such as ball park
and individual rounds in golf, in an analogous fashion. This explanation is an iterative
one, but the estimates of these effects are produced simultaneously.

There are two critical assumptions for each of the models used in this paper. The
first is that outcomes across events (games, rounds, and at bats) are independent. A
success or failure in one trial does not affect the results of other trials. One example
of dependence between trials is the “hot-hand” effect: success breeds success and failure
breeds failure. This topic has received a great deal of attention in the statistics literature.
We have found no conclusive evidence of a hot-hand effect. For interesting studies of the
hot-hand see Tversky and Gilovich (1989a); Larkey, Smith, and Kadane (1989); Tversky
and Gilovich (1989b); Albright (1993); Albert (1993); Stern and Morris (1993); Stern
(1995); and Jackson and Mosurski (1997). We do not wish to take up this issue here, but
we do believe that golf is the most likely sport to have a hot-hand effect (we have found
no analysis of the hot-hand effect in golf).

All of the models used are additive. Therefore, the second critical assumption is that
there are no interactions. An interaction in this context would mean that the performances
of different players are affected differently by a predictor. For example, if Player A is
more successful in the modern game than Player B, then had they both played 50 years
ago Player A would still have been better than player B. We address the question of



interactions in the discussion section.
We use the same parameters across sports to represent player and year effects. When
necessary, superscripts h, g, a, and r are used to represent hockey, golf, batting averages

in baseball, and home runs in baseball, respectively.

3.1 Hockey

For the hockey data we have k = 1136 players. The number of seasons played by player ¢
is n; and the age of player 7 in his jth season is a;;. The year in which player ¢ played his
Jth season is y;;, the number of points scored in that season is x;;, and the games played
is g;;. Counting the number of points for a player in a game is counting rare events in
time, which we model using the Poisson distribution.

Per game scoring for a season is difficult to obtain. To address the appropriateness of
the Poisson distribution for one player we collected data on the number of points scored
in each game for Wayne Gretzky in the 1995-96 season, as shown in Table 1. The Poisson
appears to be a reasonable match for the points scored per game (the x? goodness of fit
test statistic is 5.72, with a p-value=.22).

We assume that the points scored in a game are independent of those scored in other
games, conditionally on the player and year, and that the points scored by one player are

independent of the points scored by other players. The model is
x;; ~ Poisson(Ni;gi;), i=1,...k; j=1,...,n,
where the z;; are independent conditional on the A;;’s. Assume
log(Nij) = 0; + 0y, + filaij).

In this log-linear model, 6; represents the player-specific ability; that is, exp(6;) is the
average number of points per game for player ¢ when he is playing at his peak age (f; = 0)
in 1996 (01996 = 0). There are 49 §;’s, one for each year in our study. They represent the
difficulty of year [ relative to 1996. Therefore, we constrain di99s = 0. We refer to 1996
as the benchmark year. The function f; represents the aging effects for player :. We use
a random curve to model the aging, as discussed in Subsection 3.4. The function f; is
restricted to be 0 for some age a (player i’s peak age).

A conditionally independent hierarchical model is used for the #’s. To allow for the

distribution of players to change over time we model a separate distribution for the 6’s



for each decade. Let d; be the decade in which player ¢ was born. In the hockey example
the first decade is 1910-1919, the second is 1920-1929, the last decade, the seventh, is
1970-1979. The model is

0; ~ N(ug(dy),05(d;)), i=1,...,1136

where N(u,0?) refers to a normal distribution with a mean of y and a variance of o?.

The hyperparameters have the following distributions

O'g(dz) ~ IG(CL,b), dz = 1, ...77,

where /G(a,b) refers to an inverse gamma distribution with a mean of 1/b(a — 1) and a
variance of 1/b*(a — 1)*(a — 2). The 6; are independent conditional on the yp’s and o3’s.

The ¢;’s are independent with prior distributions
5~ N(0,7%), [=1948,...,1995.

The average forward scores approximately 40 points in a season, which is approximately
.5 points per game. Thus, we set m = log(.5) and we allow for substantial variability
around this number by setting s = .5. For the distribution of o7 we set @ = 3 and b = 3.
This distribution has a mean of 0.167 and a standard deviation of 0.167. We chose 7 = 1.
We specified prior distributions that we thought were reasonable and open minded. This
prior represents the notion that o2 is not huge, but is flexible enough that the posterior
is controlled by the data. We find little difference in the results for the priors that we

considered reasonable.

3.2 Golf

In the golf study there are k = 488 players, with player i playing n; rounds of golf (a
round consists of 18 holes). For the jth round of player i, the year in which the round
is played is y;;, the score of the round is x;;, the age of the player is a;;, and the round
number in year y;; is 7;;. The round number ranges from 1 to 16 in any particular year,

corresponding to the chronological order.



We adopt the following model for golf scores
wij ~ N(Bij, 03)
where the z;; are independent given the f3;;’s and o2. Assume
Bij = 0+ Oyyy + Yyigri; + filasg).

Parameter 6; represents the mean score for player ¢ when that player is at his peak (f; = 0),
playing a round of average difficulty in 1997 (§ = 0 and v = 0). The benchmark year is
1997, thus d1997 = 0 and each ¢; represents the difficulty of that year’s major tournaments
relative to 1997. There is variation in the difficulty of rounds within a year. Some
courses are more difficult than others; the set-up of the course can be relatively difficult
or relatively easy and the weather plays a major role in scoring. The ~’s represent the
difficulty of rounds within a year. Thus 7,, is the mean difference, in strokes, for round
v from the average round in year u. To preserve identifiability, and thus interpretability,

we restrict
16
Z ’Yu,v = 0
v=1

The aging function f; is discussed in Subsection 3.4. A decade-specific hierarchical
model is used for the 6’s. Let d; be the decade in which a golfer was born. There are
7 decades, 1900-1909,1910-1919,...,1960+. There are only 3 players in the dataset born
in the 1970’s and so they were combined into the 1960’s. Let the 6;’s be independent

conditional on the jy’s and ¢2’s and be distributed as
0; ~ N(po(di), 05(di)), i=1,...,488

where

M@(dz) ~ N(ma 82)7 dz = 17 77
o3(d;) ~ IG(a,b), di=1,..,7.

The ¢;’s are independent with prior distributions

& ~ N(0,7%), 1 =1935,...,1996



and the v, ,’s are independent with the following priors:

Yup ™~ N(Oa ¢2)

We specify the hyperparameters as follows: m =73, s =3, a=3,b =3, 7 = 3, and
¢ = 3. As in the hockey study, the results from priors similar to this one are virtually
identical. The distribution of golf scores is discussed by Mosteller and Youtz (1993). They
model golf scores as 63 plus a Poisson random variable. Their resulting distribution looked
virtually normal, with a slight right skew. They develop their model based on combining
the scores of all professional golfers. Scheid (1990) studies the scores of 3000 amateurs
and concludes that the normal fits well, except for a slightly heavier right tail. There are
some theoretical reasons why normality is attractive. Each round score is the sum of 18
individual hole scores. The distribution of scores on each hole is somewhat right-skewed
since scores are positive and unlimited from above. A score of 2,3, or 4 over par on one
hole is not all that rare, while 2,3, or 4 under par on a hole is extremely rare, if not
impossible. A residual normal probability plot is shown in Section 5 that demonstrates
the slight right-skewed nature of golf scores. We checked models with a slight right skew
and the results were virtually identical (not shown). The only resulting difference we
noticed was is in predicting individual scores (which we are not directly interested in).

Because of its computational ease and reasonable fit we adopt the normality assumption.

3.3 Baseball

In the baseball studies there are k& = 7031 players, with player ¢ playing in n; seasons.
For player 7 in his jth season let z;; be the number of hits, h;; the number of home runs,
m;; the number of at bats, a;; the player’s age, y;; the year of play, and ¢;; the player’s
home ballpark (players play half their games in their home ballpark and the other half at
various ballparks of the other teams).

We model at bats as independent Bernoulli trials, with the probability of success for
player 7 in his jth year equal to m;;. We study both hits and home runs as successes,
therefore we label 77
respectively. Therefore,

and 7;; as the probability of getting a hit and hitting a home run,
x;; ~ Binomial (mij, 71';1])

where
’ﬂf' a a
log (ﬁ) =07 + 5yij + 53;] + /i (aij)'

ij

10



For the baseball home run study we use a similar model,

hij ~ Binomial (mij, 77%) ,

where

ﬂ-ir‘ r T r r
log (ﬁ) =0; + 51/1‘3‘ + §tij + /i (aij)‘

—
The ¢ parameters are indicator functions for seasons, and the £ parameters are indicator
functions for home ballparks. We include the £ parameters to account for the possibility
that certain stadiums are “hitters” parks and others are “pitchers” parks. The aging
function f; is discussed in the following subsection.

Let d; be the decade in which player ¢« was born. There are 12 decades for the baseball
players, 1860-1869,...,19704+. A decade-specific conditionally independent hierarchical
model is used:

0F ~ N(ug(dy), (00)*(dy)), i=1,...,7031

where the #%’s are independent conditional on the p3’s and (0§)*’s. Assume
pg(d;) ~ N(m®, (s*)?), di=1,...,12

(00)*(d;) ~ IG(a®,b"), d;=1,...,12.

The 4j'’s are independent with prior distributions
5~ N(0, (%)), 1=1,...,1995
and the 7’s are independent with prior distributions
&~ N0, (¢")%).

The parameters are selected as m* = -1, s=1,a*=3,0* =3, 7* =1, and ¢* = 1.

For the home run data the following decade-specific hierarchical model is used:
0F ~ N(p"(dy), (65)*(d;)), i=1,..,7031
where the 07’s are independent conditional on the yuj’s and (05)%’s. Assume
wo(d;) ~ N(m", (s")?), d;=1,...,12

11



(0)?(d;) ~ IG(a",b"), d; =1,...,12.

The 0;’s are independent with prior distributions
5 ~ N(0,(t")?), 1=1901,...,1995
and the ¢ ’s are independent with prior distributions

& ~ N(0,(¢")%).

Weset m"=—-35,s=1,a"=3,0"=3,7" =1, and ¢" = 1. In both the average and the
home run studies the selection of the parameters in the priors have essentially no effect

on the final conclusion.

3.4 Age Functions

Common perception of aging functions is that players increase in ability as they mature,
up to a peak level, then slowly decline. It is generally believed that players improve faster
while maturing than they decrease in ability while declining. The aging curve is clearly
different for different sports, both with regard to peak age and also with regards the rate
of change during maturity and decline. Moreover, some players tend to play at near peak
performance for a long period of time while others have short periods of peak performance.
This may be due to conditioning, injuries, or genetics. We assume a mean aging curve for
each sport. We model the variation in aging for each player using hierarchical models, with
the mean aging curve as the standard. In each model, 8; represents the ability of player
1 at peak performance, in a benchmark year. Thus each player’s ability is characterized
by a profile rather than one number—it may be that Player A is better than Player B
when they are both 22 years old, but Player B is better than Player A when they are
both 35. For convenience we round off ages, assuming all players were born on January
1. Lindley and Smith (1972) proposed the use of random polynomial curves. Shi, et al
(1996) use random spline curves to model CD4 counts in infants over time. The approach
in the latter paper is similar to ours in that it models an effect in longitudinal data with
a flexible random curve.

We denote g(a) as the mean aging curve in each sport. We let @ be the peak age for

a player. Without loss we assume g(d) = 0. The following model is used for player i’s

12



aging curve:

g(a)iy; if a < ay
fila)=4¢ gla) ifay<a<ap
g(a)ihy; if a > ap

The parameter 1, = (11;, 19;) represents player i’s variation from the mean aging curve.
We define the maturing period to be any age less than a,; and the declining period as any
age greater than ap. To preserve the interpretation of ¢; and ¥y as aging parameters,
we select ap; and ap where the aging on each side becomes significant. We fit the mean
aging function for every player, then select ages (or knots), aj; and ap, to represent
players after their rise and before their steady decline, respectively. For ages a, such
that, ayr < a < ap, each player ages the same. This range was determined from intial
runs of the algorithm. We selected a region in which the performance of the players was
close to the peak performance. Part of the motivation for a range of values unaffected by
individual aging patterns is for stability in the calculations. In each study the following

hierarchical model is used:

(V135 2i) ~ N2((11)T7 diag(a%@ U2D))7

which is a bivariate normal distribution. We use IG(10,1) priors for 0%, and 0%, (mean
of 0.11 and a standard deviation of 0.039). Due to the large number of players in each
example, the priors we considered reasonable had virtually identical results.

In the golf model g(a) represents the additional number of strokes worse than peak
level for the average professional golfer at age a. The maturing and declining parameters
for each player have a multiplicative effect on the additional number of strokes. A player
with 11 = 1 matures the same as the average player. If ¢/; > 1 then the player averages
more strokes over his peak value than the average player would at the same age a < ay,.
If )y < 1 then the player averages less strokes over his peak value than the average player
would at the same age a < ayp;. The same interpretation holds for 15, only representing
players of age a > ap.

The quantity exp( f;(a)) has a multiplicative effect on the mean points per game param-
eter in hockey and on the log-odds of success in baseball. Therefore exp(g(a)) represents
the proportion of peak performance for the average player at age a.

We use a nonparametric form for the mean aging function in each sport:
g(a) = a,, a= min(age),..., max(age) (1)

13



where the a’s are parameters. The only restriction is that o, = 0 for some value a. We
select az = 0 by initial runs of the algorithm to find a. This preserves the interpretation
for the #’s as the peak performance values. This model allows the average aging function
to be of arbitrary form on both sides of peak age. In particular, the aging function may
not be monotone. While this may be non-intuitive it allows for complete flexibility. A
restriction is that the age of peak performance is the same across a sport. We believe
this is a reasonable assumption. The model is robust against small deviations in the peak
age because the aging function will reflect the fact that players performed well at those
ages. By allowing players to age differently during the maturing and declining stages each
player’s aging function can better represent good performance away from the league wide
peak. An alternative would be to model the peak age as varying across the population
using a hierarchical model.

We tried alternative aging functions which were parametric. We used a quadratic form
and an exponential decay (growth) model. Both of these behaved very simlarly to the
nonparametric form close to the peak value. The parametric forms behaved differently for
very young and very old players. The parametric form was too rigid in that it predicted far

worse performance for older players. A piecewise parametric form may be more reasonable.

4. ALGORITHMS

In this section we describe the Markov chain Monte Carlo algorithms that are used to
calculate the posterior distributions. The structure of the programs is to successively
generate values one at a time from the complete conditional distributions (see Tierney
(1994); Gelfand and Smith (1990)).

In the golf model all the complete conditional distributions are available in closed form.
In the hockey, batting average, and home run models a Metropolis-Hastings step is used
for most of the complete conditional distributions (see Chib and Greenberg (1995)). In all
the models, generating the decade specific means and standard deviations are available
in closed form.

Our results are based on runs with burn-in lengths of 5000. Every third observation
from the joint distribution is selected from one chain until 10000 observations are col-
lected. We used Fortran programs on a 166 MHZ Sun Sparc Ultra 1. The golf programs
took about 15 minutes, the hockey programs about 30 minutes, and each baseball pro-
gram took about 80 minutes. With thousands of parameters monitoring convergence is

difficult. We found that most of the parameters depended on the year effects. Therefore,
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we concentrated our diagnostic efforts on the year effects. The algorithm appeared to
converge very quickly to a stable set of year effects. Waiting 5000 observations for con-
vergence is probably overkill. Monitoring the mixing of the chain is also difficult. Again
the year effects were important. We also monitored those effects that were generated with
a Metropolis step. We varied the candidate distributions to assure that the chain was
mixing properly.

To validate our approach we designed simulations and compared the results with the
known values. We set up scenarios where players were constant over time, were getting
gradually better, and getting gradually worse. This was crossed with differing year effects.
Some of the aspects of the model were developed using this technique. For example, we
adopted different means and standard deviations for each decade based on their increased
performance in the simulations. The model described in this paper did very well in the

simulations. In particular, we found no systematic bias from these models.

5. GOODNESS-OF-FIT

In this section we consider the appropriateness of our models and address their overall
fit. For each sport we present an analysis of the residuals. We look at the sum of squared
errors for our fitted model (referred to as the full model) and several alternative models.
The no individual aging model is a subset of the full model, with the restriction that
1, = 1 and 1hy; = 1, for all i. The no aging effects model assumes f;(a) = 0, for all i and
a. The null model is a one-parameter model, which assumes all players are identical and
there are no other effects. While this one-parameter model is not taken seriously it does
provide some information about the fit of the other models.

The objective sum of squares is the expected sum of squares if the model and param-
eters are correct. This is an unattainable goal in practice, but gives an overall measure
of the combined fit of the model and the parameters. We provide an analog to R?, which
is the proportion of sum of squares explained by each model. For each model, M, this is
defined as 1 —5S5),/SSy, where SS) refers to the sum of squared deviations using model
M and subscript N indexes the null model. Myers (1990) discusses R? in the context of
log-linear models.

In calculating the sum of squares we estimate the parameters with their posterior

means.
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5.1 Hockey

The residual points per player season are plotted against the predicted points per player
season in Figure 1. We include curves for +1,2, and 3 times the square root of the
predicted values. These curves represent the +1,2, and 3 standard deviations of the
residuals, assuming that the parameters and model are correct. The percent of residuals
in each region is plotted on Figure 1. The residual plot demonstrates a lack of fit of the
model.

Table 2 presents the sum of squared deviations for each model described above. The
sum of squares for each model is the sum of the squared difference between the model
estimated point total and the actual point total, over every player season. The objective
sum of squares is 3_;; gijj\ij, where j\ij is the estimate of the points per game parameter
from the full model. This represents the expected sum of squares if the model and
parameters are exactly correct.

We feel the model is reasonable, but clearly demonstrates a lack-of-fit. The full model
is a huge improvement over the null model, but it still falls well short of the objective. Of
the three examples (golf has no objective), hockey represents the biggest gap between the
objective and the full model. We believe that this is because strong interactions are likely
in hockey. Of the three sports studied hockey is the most team oriented, in which the
individual statistics of a player are the most affected by the quality of his teammates. For
example, Bernie Nicholls scored 78 points in the 1987-88 season without Wayne Gretzky
as a teammate, and the next season scored 150 points as Gretzky’s teammate.

There is also strong evidence that the aging effects and the individual aging effects
are important. The R? is increased by substantial amounts by adding the age effects and
additionally, the individual aging effects. We think that the aging functions have a large
effect because hockey is a physically demanding sport in which a slight loss of physical
skill and endurance can have a big impact on scoring ability. If two players have slight
differences in aging patterns they can exhibit large differences in point totals (relative to

their peaks).

5.2 Golf

Figure 2 is a normal probability plot of the standardized residuals in the golf example.
The pattern in the residual qq-plot is interesting—there is a deviation from normality. The
left tail is “lighter” than that of a normal distribution and the right tail is “heavier” than

that of a normal distribution. As discussed in Section 3.2 this makes intuitive sense. It
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is very difficult to score low, while it is reasonably likely to score high. We tried various
right-skewed distributions but found little difference in the results. The only difference
we can see is in predicting individual scores, which is not a goal of this paper.

Table 3 presents the sum of squared deviations between the estimated scores from
each model and the actual scores. Because of the normal model there is no objective sum
of squares to compare the fit. The variance in the scores, o2, is a parameter that is fit by
the model and thus naturally reflects the fit of the model. Despite the small improvement
between the null model and the full model we feel that this is a very good fitting model.
This conclusion is based on the estimate of o,, which is 2.90. The R? for this model is
only 0.30, which is small, but we believe there is a large amount of variability in a golf
score, which will never be modeled. We were pleased with a standard error of prediction
of 2.90. There is little evidence that aging plays an important role in scoring. This is
partly due to the fact that most of the scores in the data set are recorded when players
are in their prime. Few players qualified for the majors when they were very old or very
young and for these ages there is an effect. There is also little evidence that individual

aging effects are needed, but this suffers from the same problem just mentioned.

5.3 Baseball

The residual plot for each baseball example indicated no serious departures from the
model. The normal probability plots showed almost no deviations from normality. The
batting average sum of squares are presented in Table 5 and the home run sum of squares
are presented in Table 4. The batting average example presents the sum of squared
deviations of the predicted number of hits from the model from the actual number of hits.
The R? is 0.60 for the full model, but this is very close to the objective sum of squares
of 0.62. We believe the batting average model is a good fitting model. The home run
model does not fit as well as the batting average example. Despite an R? of 0.80, it falls
substantially short of the objective sum of squares. The high R? is due to the large spread
in home run ability across players, for which the null model does not capture.

Aging does not play a substantial role in either measure. This is partly due to the
large number of observations close to peak, where aging does not matter, but also can
be attributed to the lack of a strong effect due to aging. The contrast between the four
examples, in the role that aging and the individual aging effects play is interesting. In
the most physically demanding of the sports, hockey, aging plays the largest role. In the
least physically demanding sport, golf, the aging effect plays the smallest role.
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6. AGE EFFECT RESULTS

The four mean age effect (g) functions are presented in Figures 3-6. Figure 3 shows the
hockey age function. The y-axis represents the proportion of peak performance for a
player of age a. As well as keeping track of the mean of the age function for each age, we
keep track of the standard deviation of the values of the curve. The dashed lines are the
+2 standard deviation curves. This graph is very steep on both sides of the peak age, 27.
The sharp increase during the maturing years is surprising-20-23 year old players are not
very close to their peak. Because of the sharp peak we specified 29 and older as declining
and 25 and younger maturing.

Figure 4 presents the average aging function for golf. In this model g represents the
average number of strokes from the peak. The peak age for golfers is 34, but the range
30-35 is essentially a “peak range.” The rate of decline for golfers is more gradual than is
the rate of maturity. An average player is within 0.25 shots per round (1 per tournament)
from peak performance when they are in the 25-40 age range. An average 20-year-old and
an average H0-year-old are both two shots per round off their peak performance. Because
of the peak range from 30-35 we specified the declining stage as 36 and older and the
maturing phase as 29 and younger.

Figures 5 and 6 present the aging functions for home runs and average, respectively.
The home run aging function presents the estimated number of home runs for a player
that is a 20 home run hitter at their peak. The peak age for home runs is 29. A 20-
home run hitter at peak is within 2 home runs of his peak when he is 25-35 years old.
There is a sharp increase for maturers. Apparently, home run hitting is a talent that is
acquired through experience and learning, rather than being based on brute strength and
bat speed. The ability to hit home runs does not decline rapidly after the peak level-even
a 40 year-old 20-home run-at-peak player is within 80% of peak performance.

The age effects for batting average are presented for a hitter that is a .300 hitter
at his peak. Hitting for average does differ from home run hitting—27 is the peak age
and younger players are relatively better hitting for average than hitting home runs. An
average peak .300 hitter is expected to be a .265 hitter at age 40. For batting average
and home runs the maturing range is 25 and younger while 31 and older is the range of

decline.
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7. PLAYER AND SPORT RESULTS

This section presents the results for the individual players and the year effects within
each sport. To understand the rankings of the players it is important to see the relative
difficulty within each sport, over the years. Each player is characterized by 6, their value
at peak performance, in a benchmark year, and by their aging profile. We present tables
that categorize players by their peak performance, but we stress that their career profiles
are a better categorization of the players. For example, in golf, Jack Nicklaus is the best
player when the players are less than 43, but Ben Hogan is the best for players over 43.

The mean of their maturing and declining parameters are presented for comparison.

7.1 Hockey

The season effect in hockey is strong. Figure 7 shows the estimated multiplicative effects,
relative to 1996. From 1948-1968 there were only six teams in the NHL and the game
was defensive in nature. In 1969 the league added 6 teams. The league continued to
expand to the present 30 teams. With this expansion it became easier to score. The
seventies and early eighties were the height of scoring in the NHL. As evidence of the
scoring effects over the years, there were many players that played at their peak age in
the sixties with moderate scoring success. They played when they were “old” in the
seventies and scored better than they had ever scored before (Gordie Howe, Stan Mikita,
and Jean Beliveau, as examples). In 1980 the wide open offensive minded World Hockey
Association, a competitor to the NHL folded and the NHL absorbed some of the teams
and many of the players. This added to the offensive nature and style of the NHL. In the
eighties the NHL began to attract players from the Soviet block. The United States also
began to produce higher caliber players. This influx again changed the talent pool.
Scoring began to wane beginning in 1983. This is attributed in part to a change
in the style of play. Teams went from being offensive in nature to defensively oriented.
“Clutching and Grabbing” has become a common term to describe the style of play in
the 1990’s. As evidence of this, in 1998 the NHL made rule changes intended to increase
scoring. The seasonal effects are substantial. The model predicts that a player scoring
100 points in 1996 is would have scored 140 points in the mid seventies or early eighties.
Table 6 presents the top 25 players, rated on their peak level. Figure 8 presents profiles
of some of the best players. It demonstrates the importance of a profile, over a one number

summary. Mario Lemieux is rated as the best peak performance player-but Gretzky is
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estimated to be better when they are young and Lemieux is estimated to be the better
after peak. The fact that Lemieux is ahead of Gretzky, at peak, may seem surprising.
Gretzky played during the most wide-open era in the NHL, while Lemieux played more of
his career in a relatively defensive minded game. Lemieux’s career and season totals are a
bit misleading because he rarely played a full season. He missed many games throughout
his career and we rate players on their per game totals.

As a cross validation we present the model predicted point totals for the 10 highest
rated peak players that are still active. We estimated the 1997 season effect, 51997 =
—0.075, by the log of the ratio of goals scored in 1997 to goals scored in 1996. The results
are presented in Table 7. We calculated the variance of each predicted point total using
the variance of the Poisson model and the points per game parameter, \;; (the standard
deviation is reported in Table 7). With the exception of Pavel Bure, the predictions are

very close.

7.2 Golf

Figure 7 shows the estimate for the difficulty of each round of the Masters. The mean of
these years is also plotted. We selected the Masters because that is the one tournament
played on the same course, Augusta National, each year and the par has stayed constant
at 72. These estimates measure the difficulty of each round, separated from the ability of
the players playing those rounds. These estimates may account for weather conditions,
course difficulty, and the equipment of the time. There is approximately a one shot
decrease from the mid-fifties to the present time. The forties appear to be quite easy—we
are unsure why. We attribute the decrease to the improved equipment available to the
players. While it does appear that Augusta is becoming easier to play, the effects of all
the new equipment do not appear to be as strong as public perception would have you
believe. Augusta is a challenging course, in part, because of the speed and undulation on
the greens. It may be that they have become faster, and more difficult, over the years. If
this is true they are playing a more difficult course and playing it one shot better than
before. In such a case it would imply the equipment has helped more than one shot.
Table 8 shows the top 25 players of all time, when they are at their peak. Figure 9
shows the profile of six of the more interesting careers. The y-axis is the predicted mean
average for each player when they are the respective age. Jack Nicklaus at his peak is
nearly a half shot better than any other player. Nicklaus essentially aged like the average

player. Ben Hogan, who is .7 shots worse than Nicklaus at peak, aged very well. He is
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estimated to be better than Nicklaus when they are each 43 and older. The beauty of the
hierarchical models comes through in the estimation of Tiger Woods’ ability. Woods has
played very well as a 21 year old player (winning the Masters by 12 shots). He averaged
70.4 during the benchmark 1997 year. If he aged like the average player, which means
during 1997 he was 1.8 shots per round off his peak performance, he would have a peak
performance of 68.6. If he aged like the average player he would be, by far, the best player
of all-time. This is considered very unlikely because of the distribution of players. It is
more likely that he is a quick maturer, and is playing closer to his peak than the average
21-year-old. Thus his maturing parameter is estimated to be .52. The same phenomenon
happens for both Ernie Els and Justin Leonard who are performing very well at young

ages.

7.3 Baseball

Figure 7 shows the yearly effects for home runs and batting average. It shows that after
1920, when the dead-ball era ended, the difficulty of hitting home runs has not changed
a great deal. A 20-home-run-hitter in 1996 is etimated to have hit about 25 in the
mid twenties. It has slowly decreased over the years, perhaps because of the increasing
ability of the pitchers. The difficulty of getting a hit for a batter of constant ability has
decreased since the early 1920’s. The probability of getting a hit bottomed out in 1968,
and has increased slightly in the last couple years. The slight increase after 1968 has been
attributed to the lowering of the pitcher’s mound, thus decreasing the pitchers ability.
The increase in observed batting averages in the last couple years is usually attributed
to expansion in MLB. Most baseball experts believe umpires are using a smaller strike
zone-this may also play a role. We attribute part of the general decrease over the century
in the difficulty of getting a hit to the increasing depth and ability of pitchers.

Tables 9 and 11 show the top 25 peak batting average and home run players, respec-
tively. The posterior means for peak performance in the benchmark year of 1996, the
maturing parameter (1), and the declining parameter (1)9) are provided. Figures 10 and
11 show the career profiles for the batting average and home run examples, respectively.
The model selects Mark McGwire as the greatest home run per at bat hitter in history.
The model estimates that if you went back in time to Babe Ruth’s prime, and sent him
to 1996, he would hit 5 fewer home runs than McGwire. Interestingly the “Home Run
King,” Hank Aaron, is only 23rd on the peak performance list (he is given the title “Home

Run King” because he has the most career home runs, 755). He declined very slowly (the
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slowest of the top 100). He is higher on the batting average list (13) than on the home
run list! Willie Stargell and Darryl Strawberry provide an interesting contrast in profiles.
At peak they are both considered 41-home run-hitters. Strawberry is estimated to have
matured faster than Stargell, while Stargell maintained a higher performance during the
decline.

Ty Cobb, who played his prime about 80 years ago is still considered the best average
hitter of all time. Tony Gwynn is estimated to decline slowly (¢ = .78) and is considered
a better batting average hitter when the two are older than 34. Paul Molitor is estimated
to be the best decliner of the top 100 peak players. At the age of 40, in 1996, he recorded
a batting average of .341. Alex Rodriguez exhibits the same regression to the mean
characteristics as Tiger Woods. In Rodriguez’s second year, the benchmark year of 1996,
he lead the American League in hitting with a batting average of .358. The model predicts
that at his peak in 1996 he would hit .336. Because of the shrinkage factor, as a result
of the hierarchical model, it is more likely that he is closer to his peak than the average
player (is a good maturer) and that 1996 was a “lucky” year for Rodriguez.

We recorded 78 parks in use, in MLB, beginning in 1901. When a stadium underwent
significant alterations we included the “before” and “after” parks as being different. The
constraint for the parks is that & {New Fenway} = 0 (There is an Old Fenway, from 1912-
1933, and a New Fenway, 1933-. Significant changes were made in 1933, including the
fences being moved in substantially). We report the three easiest and three hardest parks
for home runs and batting average (In reporting the parks in this paper we ignore parks
with less than 5 years of use unless they are current parks.) For a 20-home run hitter in
New Fenway the expected number of home runs in the three easiest home run parks are
30.1 in South End Grounds (Boston Braves, 1901-1914), 28.6 in Coors Field (Colorado,
1995-), and 26.3 in New Oakland Coliseum (Oakland, 1996-). The 20-home run hitter
would be expected to hit 14.5 at South Side (Chicago White Sox, 1901-1909), 14.8 at
Old Fenway (Boston Red Sox, 1912-1933), and 15.9 at Griffith Stadium (Washington
Senators, 1911-1961), which are the three most difficult parks. The average of all parks,
for a 20-home-run hitter at New Fenway, is 20.75 home runs.

For a .300-hitter in New Fenway the three easiest parks to hit for average are .320 at
Coors Field, .306 at Connie Mack Stadium (Philadelphia Phillies, 1901-1937), and .305
at Jacobs Field (Cleveland, 1994-). The three hardest parks to hit for average are .283
at South Side, .287 at Old Oakland Coliseum (Oakland, 1968-1995), and .287 at Old
Fenway. New Fenway park is a good (batting average) hitters park. A .300-hitter at New

22



Fenway would be a .294-hitter in the average of the other parks. Some of the changes to
the ballparks have been dramatic. Old Fenway was a very difficult park in which to hit
for average or home runs, but after the fences were moved in the park is close to average.
The Oakland Coliseum went from a very difficult park to a very easy park after the fences
were moved in and the outfield bleachers were enclosed in 1996.

As cross validation we present the model predictions for 1997 performance. Recall, the
baseball study uses data from 1996 and earlier in the estimation. We estimate the season
effect of 1997 by the league wide performance relative to 1996. For batting average the
estimated year effect for 1997 is —0.01. Table 10 presents the model predicted batting
average for the 10 highest rated peak batting average players of all time that are still
active. The estimates are good, except for Piazza and Gwynn. Both of those players hit
for batting averages that were approximately two standard deviations above the predicted
values.

Table 12 presents the model predicted and actual number of home runs, conditional on
the number of at bats, for the 10 highest rated peak home run hitters of all time that were
still active. The estimated year effect for 1997 is —0.06. Palmer, Belle, and Canseco did
worse than their projected values. The model provided a nice fit for Griffey and Mcgwire.
They each posted historical years that were not that unexpected by the model. Standard
errors of prediction were calculated using the error of the binomial model and the error

in the estimates of the player abilities, the age effects, and the ball park effects.

8. POPULATION DYNAMICS

In this section we address the changing distribution of players within each study. Figures
12-15 present a graph of the peak value estimate for each player, graphed against the year
the player was born. These player effects are separated from all the other effects, thus
the players can be compared directly.

In hockey there is some slight bias on each end of the population distribution (see
Figure 12). Players born early in the century were fairly old when our data began (1948).
They are only in the data set if they are good players. The restriction that each player
plays at least 100 games was harder for a player to reach earlier in this century because
a season consisted of 48 games, rather than the current 82 games. Therefore, there is a
bias, overestimating the percentiles of the distribution of players for the early years. Of
the players born late in this century (after 1970) it is more likely that the good ones are
included. Thus the percentiles are probably slightly overestimated.
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For hockey players born after 1940 there is a clear increase in ability. Of the top 25
players, nine are current players who have yet to reach their peak (this is 36%, where only
8% of the players in our data had not reached their peak). It is hard to address Gould’s
claim with the hockey distribution. This is because not everyone in this data set is trying
to score points. Many hockey players are role players, where their job is to play defense or
even to just pick fights with the opposition! The same is true of the distribution of home
run hitters in baseball. Many baseball players are not trying to hit home runs. They may
be players that are on the team because they are great defensively or to hit for average or
to otherwise get on base. The same type of pattern shows up in home run hitting. The
top 10% of home run hitters are getting better with time (see Figure 13). This could be
attributed to the increasing size and strength of the population from which players are
produced, the inclusion of African Americans and Latin Americans, or an added emphasis
by major league managers to favor home run hitters.

It is easier to address Gould’s claim with the batting average and golf studies. In
baseball every player is trying to get a hit. Every player participates in the offense an
equal amount and even the defensive minded players try to get hits. In golf every player
tries to minimize his scores, the only goal for the golfer. In the golf study there is a bias
in the players who are in our data set. Only players with 10 majors are included. It was
harder to achieve this in the early years because we only have data on two majors until
1961. It was also hard to find the birth dates for marginal players from the early years.
We believe we have everyone who was born after 1940, but we are missing about 25%
of the players born before then. There is also a slight bias on each end of the batting
average graph. Only the great players born in the 1860’s were still playing after 1900 and
only the best players born in the early 1970’s are in the dataset.

Except for the tails of Figures 12 & 13 there is an clear increase in ability. The golf
study supports Gould’s conjecture. The best players are getting slightly better; but there
are great players in every era. The median and 10th percentile are improving rapidly
(see Figure 15). The current 10th percentile player is almost 2 shots better than the
10th percentile fifty years ago. This explains why nobody dominates golf the way Hogan,
Snead, and Nelson dominated in the 1940’s and 1950’s. The median player, and even the
marginal player can have a good tournament and win. Batting average exhibits a similar
pattern. The best players are increasing in ability, but the 10th percentile is increasing
faster than the 90th percentile (see Figure 14). It appears as though batting averages

have increased steadily, while golf is in a period of rapid growth.
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These conclusions coincide with the histories of these sports. American sports are
experiencing increasing diversity in the regions from which they draw players. The glob-
alization has been less, for the most part, in MLB, where players are drawn mainly from
the United States. Baseball has been fairly stable within the United States where it has
been an important part of the culture for more than a century. On the other hand, golf
has experienced a huge boom in the United States and the world. Golf used to be a game

for the very rich. This has changed and the game now has wider appeal.

9. DISCUSSION

This paper develops a model for comparing players from different eras in their performance
in three different sports. Overlapping careers in each sport provide a network of bridges
from the past to the present.

In each sport we constructed additive models to account for various sources of error.
The ability of each player, the difficulty of each year, and the effects of aging on perfor-
mance were modeled. To account for different players aging differently we use random
curves to represent the individual aging effects. The changing population in each sport is
modeled with separate hierarchical distributions for each of the decades.

Because of multiple sources of variation that were not accounted for in scoring, the
model for the scoring ability of NHL players did not fit as well as the model in the other
three studies. It still provided reasonable estimates, and the face validity of the results is
very high. The different years in hockey play an important role in scoring. Career totals
for individuals are greatly influenced by the era in which they played. Wayne Gretzky
holds nearly every scoring record in hockey and yet we estimate him to be the second best
scorer of all time. The optimal age for a hockey player is 27-with a sharp decrease after
the age of 30. A hockey player of age 34, the optimal golf age, is only 75% of his peak
value. Many of the greatest scorers of all time are playing now—NHL hockey is a sport
that has greatly expanded its talent pool in the last 20 years, and the number of great
players has increased as well.

The golf model provided a very good fit, with results that are intuitively appealing.
Players’ abilities have increased substantially over time. The golf data support Gould’s
conjecture. The best players in each era are comparable, but the median, and below
average players are getting much better over time. The 10th percentile player has gotten
about two shots better over the last 40 years. The optimal age for a professional golfer is

34, though the range 30-35 is nearly optimal. A golfer of 20 is approximately equivalent to
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the same golfer at age 50-both are about 2 shots below their peak level. We found evidence
that playing Augusta National now, with the equipment and conditions of today, is about
one shot easier than playing it with the equipment and conditions of 1950. Evidence was
also found that golf scores are not normal. The left tail of scores is slightly shorter than
a normal distribution and the right tail slightly heavier than a normal distribution.

The baseball model fit very well. The ability of players to hit home runs has increased
dramatically over the century. Many of the greatest home run hitters ever are playing
now. Batting average does not have the same increase over the century. There is a
gradual increase in the ability of players to hit for average, but the increase is not nearly
as dramatic as for home runs. The distribution of batting average players lends good
support to Gould’s conjecture. The best players are increasing in ability, but the median
and 10th percentile players are increasing faster over the century. It has gotten harder
for players of a fixed ability to hit for average. This may be due to the increasing ability
of the pitchers.

Extensions of this work include collecting more complete data in hockey and golf. The
aging curve could be extended to allow for different peak ages for the different players.
Model selection could be employed to address how the populations are changing over

time-including continuously indexed hierarchical distributions.
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Table 1. The points scored in each of Wayne Gretzky's 83 games in the 1995-96 season. For
each point total the probability of that occurrence, assuming a Poisson distribution with a
mean of 1.18, is shown in the second column.

Points Gretzky  Poisson
0 23/83=0.28  0.31
1 34/83=0.41  0.36
2 18/83=0.22  0.21
3 4/83=0.05 0.08
4
5

4/83=0.05 0.02
0/83=0.00  0.006

Table 2. The sum of squared deviations between the predicted point totals for each model
and the actual point totals in the hockey example.

Model SS R?
Objective 346,000 0.91
Full 838,000  0.79
No individual aging 980,000  0.75
No aging effects 1,171,000 0.70
Null 3,928,000

Table 3. The sum of squared deviations between the predicted score for each model and the
actual score in the golf example.

Model SS R?
Full 366,300 0.30
No individual aging 366,600 0.30
No aging effects 372,000 0.29
Null 527,000




Table 4. The sum of squared deviations between the predicted number of home runs for each
model and the actual number of home runs in the home run example

Model SS R?
Objective 171,000  0.86
Full 238,000  0.80
No individual aging 242,500  0.80
No aging effects 253,700  0.78
Null 1,203,000

Table 5. The sum of squared deviations between the predicted number of hits for each model
and the actual number of hits in the batting average example.

Model SS R?
Objective 1,786,000 0.62
Full 1,867,000 0.60

No individual aging 1,897,000 0.60
No aging effects 1,960,000 0.58
Null 4,699,000




Table 6. The top 25 peak players in the hockey study. The means of i/, and 1), are also
presented. The Points in 1996 column represents the mean points (with standard deviations
given in parentheses) for the player in 1996 if the player was at his peak performance.

Rank Name Born Points in 1996 ¢ 9
1 M. Lemicux 1965 187 (7) 118 0.89
2 W. Gretzky 1961 181 (5) 0.66 1.66
3 E. Lindros 1973 157 (16) 0.93 1
4 J. Jagr 1972 152 (9) 137 1
5 P Kariya 1974 129 (15) 095 1
6 P. Forsberg 1973 124 (10) 0.84 1
7 S. Yzerman 1965 120 (5) 0.91 1.43
8 J. Sakic 1969 119 (6) 095 1
9  G.Howe 1928 119 (7) 1.04  0.69
10 T. Selanne 1970 113 (6) 078 1
11 P. Bure 1971 113 (8) 081 1
12 J. Beliveau 1931 112 (5) 0.67 0.90
13 P. Esposito 1942 112 (5) 1.82 1.36
14 A. Mogilny 1969 112 (6) 1.18 1
15 P. Turgeon 1969 110 (6) 095 1
16  S. Federov 1969 110 (5) 1.05 1
17 M. Messier 1961 110 (4) 1.51 0.55
18  P. LaFontaine 1965 109 (5) 1.20 1.32
19 Bo. Hull 1939 108 (4) 0.94 1.29
20 M. Bossy 1957 108 (4) 0.86 1.02
21 Br. Hull 1964 107 (5) 115 1.12
22 M. Sundin 1971 106 (7) 099 1
23 J. Roenick 1970 106 (6) 0.67 1
24 P. Stastny 1956 105 (4) 1.20 1.12
25 J. Kurri 1960 105 (4) 1.11 1.30




Table 7. The predicted and actual points for the top ten model estimated peak players that
played in 1997. The Model used only data from 1996 and prior to predict the point totals.

Rank Name Age in 1997 Games Played Predicted Points Actual Points
1 M. Lemieux 32 76 135 (14.9) 122
2 W. Gretzky 36 82 103 (13.9) 97
3 E. Lindros 24 52 84 (12.0) 79
4 J. Jagr 25 63 99 (13.1) 97
5 P. Kariya 23 69 86 (12.8) 99
6 P. Forsberg 24 65 83 (12.5) 86
7 S. Yzerman 32 81 84 (13.1) 85
8 J. Sakic 28 65 87 (12.6) 74
10 T. Selanne 27 78 99 (13.6) 109
11 P. Bure 27 63 81 (12.3) 55




Table 8. The top 25 peak players in the golf study. The standard deviations are in the
parentheses. The means of 11 and 1), are also presented.

Rank Name Born 0 (0 (5
J. Nicklaus 1940 70.42 (0.29) 1.03 0.99
. Watson 1949 70.82 (0.23) 0.92 1.19
. Hogan 1912 71.12 (0.29) 1.13 0.27
. Faldo 1957 71.19 (0.21) 1.19 1.21
. Palmer 1929 71.33 (0.28) 1.19 0.95
. Norman 1955 71.39 (0.19) 1.21 0.64
Leonard 1972 71.40 (0.45) 0.68 1
Els 1969 71.45 (0.34) 0.78 1
. Player 1935 71.45 (0.23) 0.87 0.62
Couples 1959 71.50 (0.21) 1.00 0.97
. Irwin 1945 71.56 (0.26) 1.02 0.68
. Peete 1943  71.56 (0.36) 1 0.80
Boros 1920 71.62 (0.37) 1 0.61

(0.24)

(0.29)

(0.27)

(0.39)

(0.23)

(0.22)

(0.64)

(0.26)

(0.31)

(0.44)

(0.22)

(0.30)

. Floyd 1942 71.63 (0.24) 1.22 0.38
Trevino 1939 71.63 (0.29) 1.00 0.72
Snead 1912 71.64 (0.27) 1.10 0.21
Olazabal 1966 71.69 (0.39) 0.74 1

Kite 1949 71.71 (0.23) 0.98 0.70
. Crenshaw 1952 71.74 (0.22) 0.43 1.22
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20 Woods 1975  71.77 (0.64) 0.52 1
21 Casper 1931 71.77 (0.26) 1.00 1.09
22 Nelson 1912 71.78 (0.31) 1.00 1.11
23 . Mickelson 1970 71.79 (0.44) 0.79 1
24 Wadkins 1949 71.79 (0.22) 1.13 0.78
25 . Lehman 1959 71.82 (0.30) 1.05 0.79




Table 9. The top 25 peak players for the batting average study. The standard deviations are
in the parentheses. The means of 1)1 and 1), are presented.

Rank Name Born Average Y o
1 T. Cobb 1886 0.368 ( .005) 1.14 1.31
2 T. Gwynn 1960 0.363 ( .006) 1.08 0.78
3 T. Williams 1918 0.353 ( .006) 0.95 0.93
4 W. Boggs 1958 0.353 (.005) 1.05 1.17
5 R. Carew 1945 0.351 ( .005) 1.06 0.92
6 J. Jackson 1889 0.347 (.007) 0.86 1.12
7 N. Lajoie 1874 0.345 ( .009) 1 1.36
8 S. Musial 1920 0.345 ( .005) 0.98 1.16
9 F. Thomas 1968 0.344 (.008) 0.99 1
10 E. Delahanty 1867 0.340 ( .001) 1 1.02
11 T. Speaker 1888 0.339 ( .006) 0.99 1.32
12 R. Hornsby 1896 0.338 ( .005) 1.02 1.02
13 H. Aaron 1934 0.336 ( .006) 0.89 1.25
14 A. Rodriguez 1975 0.336 ( .001) 0.85 1
15  P. Rose 1941 0.335 (.004) 1.25 0.89
16  H. Wagner 1874 0.333 ( .007) 1 1.30
17 R. Clemente 1934 0.332 ( .005) 1.37 0.50
18  G. Brett 1953 0.331 ( .005) 0.92 1.16
19  D. Mattingly 1961 0.330 ( .006) 0.88 1.07
20 K. Puckett 1961 0.330 ( .006) 1.14 0.93
21 M. Piazza 1968 0.330 ( .009) 1.04 1
22 E. Collins 1887 0.329 (.004) 0.96 1.01
23 E. Martinez 1963 0.328 ( .008) 1.22 0.79
24 P. Molitor 1956  0.328 ( .005) 0.94 0.31
25  W. Mays 1931 0.328 ( .005) 0.99 1.19

Table 10. The predicted and actual batting averages for the top ten model estimated peak
players that played in 1997. The model used 1901-1996 to predict 1997 totals.

Rank Name Age in 1997 At Bats Predicted BA Actual BA
2 T. Gwynn 37 592 0.329 (0.021) 372
4 W. Boggs 39 353 0.318 (0.027) 292
9 F. Thomas 29 530 0.328 (0.023) .347
14  A. Rodriguez 22 587 0.312 (0.022) .300
21 M. Piazza 29 556 0.316 (0.023) .362
23  E. Martinez 34 542 0.309 (0.022) .330
24 P. Molitor 41 538 0.290 (0.022) .305
29  R. Alomar 29 412 0.316 (0.026) .333
39 K. Griffey 28 608 0.313 (0.022) .304
47 M. Grace 33 555 0.308 (0.022) .319




Table 11. The top 25 peak players for the home run study. The standard deviations are in
the parentheses. The means of 1) and 1), are presented.

Rank Name Born 0 Y1 o
1 M. McCGwire 1963 .104 (.006) 0.97 1.12
2 J. Gonzalez 1969 .098 (.008) 1.05 1
3 B. Ruth 1895 .094 (.004) 0.72 0.93
4 D. Kingman 1948 .093 (.004) 0.96 1.05
5 M. Schmidt 1949 .092 (.005) 0.99 1.18
6 H. Killebrew 1936 .090 (.005) 0.87 1.13
7 F. Thomas 1968 .089 (.007) 0.99 1
8 J. Canseco 1964 .088 (.004) 1.05 1.01
9 R. Kittle 1958 .086 (.006) 1.08 0.96
10 W. Stargell 1940 .084 (.003) 1.24 0.79
11 W. McCovey 1938 .084 (.004) 1.04 1.22
12 D. Strawberry 1962 .084 (.005) 0.70 1.10
13 B. Jackson 1962 .083 (.006) 1.06 1.04
14 T. Williams 1918 .083 (.004) 0.88 0.97
15 R. Kiner 1922 .083 (.004) 1.01 1.05
16 P. Seerey 1923 .081 (.009) 0.91 1
17 R. Jackson 1946 .081 (.004) 0.83 1.11
18 K. Griffey 1969 .080 (.006) 1.03 1
19 A. Belle 1966 .080 (.006) 1.12 1
20 R. Allen 1942 .080 (.004) 1.16 1.12
21 B. Bonds 1964 .079 (.004) 1.27 1.05
22 D. Palmer 1968 079 (.007) 1.07 1
23 H. Aaron 1934 .078 (.003) 1.26 0.53
24 J. Foxx 1907 078 (.003) 1.34 1.16
25 M. Piazza 1968 .078 (.006) 0.95 1

Table 12. The predicted and actual home runs for the top ten model estimated peak players
that played in 1997. The model only used 1901-1996 to predict 1997 totals.

Rank Name Age in 1997 At Bats Predicted HR Actual HR
1 M. McGwire 34 540 55(7.63) 58
2 J. Gonzalez 28 541 41(7.08) 42
7 F. Thomas 29 530 42(7.17) 35
8 J. Canseco 33 388 37(6.36) 23
12 D. Strawberry 35 29 2(1.58) 0
18 K. Griffey 28 608 49(7.74) 56
19 A. Belle 31 634 6(7.15) 30
21 B. Bonds 33 532 37(6.48) 40
22 D. Palmer 29 556 4(6.51) 23
25 M. Piazza 29 542 6(6.63) 40




Figure 1. The residuals in the hockey study plotted against the fitted values. The lines are
+1,2, and 3 square root of the predicted values. These are the standard deviations assuming
the model and parameters are correct and the data are truly Poisson. The percentage of
observations in each of the regions partitioned by the +1,2, and 3 standard deviations are
reported on the graph.
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Figure 2. Normal probability plot of the residuals from the golf model.
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Figure 3. The estimated mean aging function and pointwise +2 standard deviation curves
for the hockey study. The y-axis is the proportion of peak for a player of age a.
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Figure 4. The estimated mean aging function and pointwise +2 standard deviation curves
for the golf study. The y-axis is the number of shots more than peak value for a player of age
a.
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Figure 5. The estimated mean aging function and pointwise +2 standard deviation curves
for the home run study. The y-axis is the number of home runs for a player that is a 20-home
run hitter at peak performance.
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Figure 6. The estimated mean aging function and pointwise +2 standard deviation curves
for the batting average study. The y-axis is the batting average for a player that is a .300-home
run hitter at peak performance.
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Figure 7. The yearly effects for the hockey, golf, home run, and batting average studies.
The hockey plot shows the multiplicative effect on scoring for each year, relative to 1996.
The golf plot shows the additional number of strokes for each round in the Masters, relative
to the average of 1997. The line is the average for each year. The home run and batting
average studies show the estimated number of home runs for a 20-home run hitter in 1996
and a .300-batter in 1996, respectively.
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Figure 8. A profile of some of the best players in the hockey study. The estimated mean
number of points for each age of the player, if that season were 1996.
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Figure 9. A profile of some of the best players in the golf study. The estimated mean
score for each age of the player, if that round were an average 1997 round.
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Figure 10. A profile of some of the best players in the batting average study. The
estimated batting average for each age of the player, if that year were 1996.
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Figure 11. A profile of some of the best players in the home run study. The estimated
number of home runs, conditional on 500 at bats, for each age of the player, if that year were
1996.
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Figure 12. The estimated peak season scoring performance of each player plotted against
the year they were born. The y-axis represents the mean number of points scored for each
player, at their peak, if the year was 1996. The three curves are the smoothed 10th, 50th and
90th percentiles.
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Figure 13. The estimated peak home run performance of each player plotted against the
year they were born. The y-axis represents the mean number of home runs for each player,
at their peak, if the year was 1996. The three curves are the smoothed 10th, 50th and 90th
percentiles.
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Figure 14. The estimated peak batting average performance of each player plotted against
the year they were born. The y-axis represents the mean probability of a hit for each player,
at their peak, if the year was 1996. The three curves are the smoothed 10th, 50th and 90th
percentiles.
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Figure 15. The estimated peak scoring performance of each player plotted against the
year they were born. The y-axis represents the mean score for each player, at their peak, if
the year was 1997. The three curves are the smoothed 10th, 50th and 90th percentiles.



